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LETTER TO THE EDITOR

Exact solution of an N -body problem in one dimension

Avinash Khare†
Institute of Physics, Sachivalaya Marg, Bhubaneswar-751 005, India

Received 23 October 1995

Abstract. A complete energy spectrum is obtained for the quantum mechanical problem ofN

one-dimensional equal mass particles interacting via potential

V (x1, x2, . . . , xN ) = g

N∑
i<j

1

(xi − xj )2
− α√∑

i<j (xi − xj )2
.

Furthermore, it is shown that the scattering configuration, characterized by initial momenta
pi(i = 1, 2, . . . , N), goes over into a final configuration characterized uniquely by the final
momentap′

i with p′
i = pN+1−i .

In recent years, the Calogero–Sutherland (CS) type ofN -body problems in one dimension
has received considerable attention in the literature [1–4]. It is believed that the CS model
with inverse square interaction provides an example of an ideal gas in one dimension
with fractional statistics [5]. Moreover, these models are related to (1+ 1)-dimensional
conformal field theory, random matrices, as well as a host of other things [6]. Inspired
by these successes, it is of considerable interest to discover new exactly solvableN -body
problems.

The purpose of this letter is to present one such example. In particular, we show that
the N -body problem with equal mass in one dimension, characterized by (¯h = 2m = 1,
g > −1/2, α > 0)

H = −
N∑
i=1

∂2

∂x2
i

+
N∑
i<j

g

(xi − xj )2
− α√∑

i<j (xi − xj )2
(1)

is exactly solvable. The interesting point about this model is that, unlike most other exactly
solvable models, it has both bound-state and scattering solutions. In particular, we show that
the complete bound-state spectrum (in the centre-of-mass frame) is given by the formula

En+k = − α2

4N(n+ k + b + 1
2)

2
n, k = 0, 1, 2 (2)

where

b = +N(N − 1)

2
a + N(N + 1)

4
− 3

2
a = 1

2

√
1 + 2g. (3)

For positive energy one has only scattering states. We show that a scattering
configuration, characterized by initial momentapi (i = 1, 2, . . . , N), goes over into a
final configuration characterized uniquely by the final momentap′

i with

p′
i = pN+1−i . (4)
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However, unlike the pure inverse square scattering case(α = 0), in our case the phase shift
is energy-dependent. Thus, as in other integrable cases, the scattering problem reduces to a
sequence of two-body processes.

Finally, following Sutherland [3], I also solve a slightly different variant of the

Hamiltonian (1), with−α/
√∑

i<j (xi − xj )2 being replaced by a potential−α/
√∑

i x
2
i ,

and obtain exact expressions for the ground-state energy eigenvalues and eigenfunctions.
Consider the Hamiltonian as given by equation (1). We need to solve the eigenvalue

equation

Hψ = Eψ (5)

whereψ is a translation invariant eigenfunction. Note that our Hamiltonian is very similar
to the classic Calogero Hamiltonian (see equation (2.1) of his paper [2]) except that, whereas

he has a pairwise quadratic potential, we have a ‘N -body’ potential−α/
√∑

i<j (xi − xj )2.

However, we shall see that many of the key steps are very similar in the two cases and
hence we avoid giving most steps which are already contained there [2]. Without any loss
of generality, as in [2] we also restrict our attention to the sector of the configuration space
corresponding to a definite ordering of particles, say

xi > xi+1 i = 1, 2, . . . , N − 1. (6)

From [2] it is clear that the normalizable solutions of equation (5) (withH being given by
equation (1)) can be cast in the form

ψ(x) = Za+1/2φ(r)Pk(x) (7)

wherea is defined in equation (3), whileZ andr are given by

Z = 5N
i<j (xi − xj ) r2 = 1

N

N∑
i<j

(xi − xj )
2 (8)

andPk(x) is a homogeneous polynomial of degreek in the particle coordinates and satisfies
the generalized Laplace equation, i.e.[ N∑

i=1

∂2

∂x2
i

+ 2

(
a + 1

2

) N∑
i<j

1

(xi − xj )

(
∂

∂xi
− ∂

∂xj

) ]
Pk(x) = 0. (9)

As discussed in detail in [2], the polynomialsPk(x) are completely symmetrical under
the exchange of any two coordinates. On inserting the ansatz (7) into the Schrödinger
equation (5) (withH given by equation (1)) and using equation (9) and following the
procedure of [2], we find thatφ(r) satisfies the equation

−
[
φ′′(r)+ {2k + 2b + 1}1

r
φ′(r)

]
− (

α√
Nr

+ E)φ(r) = 0 (10)

where prime denotes differentiation with respect to the argument. The normalizable solutions
of this equation are

φn,k(r) = exp
(
−

√
|E|r

)
L2b+2k
n

(
2
√

|E|r
)

(11)

while the corresponding energies are as given by equation (2). HereLαn(r) is a Laguerre
polynomial. Notice that in expression (2) for the energy,n and k always come in the
combinationn+k (unlike the Calogero case [2] where it comes in the combination 2n+k).

In the special case ofN = 3, we can check our expressions forEn andψn,k with the
exact expressions obtained by an entirely different method (see equations (40)–(43) of [7]).
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On comparing the two we find (note that the coupling constant in [7] is
√

3α rather thanα)
that the two expressions agree providedk = 3l andPk(x) ∝ r3lC

a+1/2
l (cos 3φ) whereCai

is a Gegenbauer polynomial.
Let us now consider the positive energy spectrum of the Hamiltonian (1). It is, of

course, a purely continuous spectrum. Following the treatment given above and as in [2,
section 4], it is clear that the complete set of stationary eigenfunctions of the problem (in
the centre-of-mass frame) is

ψpk = Za+1/2φp(r)Pk(x) k = 0, 1, 2, . . . p > 0 (12)

wherep is connected to the energy eigenvalue byE = p2 > 0 (note that we have chosen
h̄ = 2m = 1) while φp(r) satisfies equation (10). It is easily shown that forE > 0, the
solution of equation (10) is given by

φp(r) = eiprF

(
k + b + 1

2
− iα

2p
√
N
, 2k + 2b + 1; −2ipr

)
. (13)

One can now run through the arguments of [2, section 4] and show that if the
stationary eigenfunction describing, in the centre-of-mass frame, the scattering situation
is characterized by the form

ψin ∼ C exp

(
i
N∑
i=1

pixi

)
(14)

with (notexi > xi+1, i = 1, 2, . . . , N − 1)

pi 6 pi+1 p2 =
N∑
i=1

p2
i

N∑
i=1

pi = 0 (15)

thenψout is given by

ψout ∼ Ce2iηp−ibπ exp

(
i
N∑
i=1

pN+1−ixi

)
(16)

where

e2iηp = 0(k + b + 1
2 − iα/2p

√
N)

0(k + b + 1
2 + iα/2p

√
N)
. (17)

Thus we have the remarkable result that, even in the presence of the potential

−α/
√∑

i<j (xi − xj )2, theN -particle scattering problem reduces to a sequence of two-body

processes as characterized by equation (4) but now one has an energy-dependent phase shift.
Note that all the results about scattering are also valid in the case whenα is negative but
now the spectrum is purely continuous and there are no bound states.

Finally, let us discuss the ‘Sutherland variant’ [3] of the Hamiltonian (1). Consider

H = −
N∑
i=1

∂2

∂x2
i

+
∑
i<j

g

(xi − xj )2
− α√∑

i x
2
i

(18)

i.e. the N -body potential is now slightly different. Note that for the Calogero case,
Sutherland [3] was able to obtain an exact expression for the ground-state energy and
eigenfunctionψ , and find a remarkable connection ofψ2 with the joint probability density
function for the eigenvalues of matrices from a Gaussian ensemble in the case when
β = 2λ = 1, 2 or 4. Using these connections he was able to compute [3] the one-particle
density and the pair correlation function.
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Following Sutherland, let us consider the Schrödinger equationHψ = Eψ with H as
given by equation (18). Furthermore, let us write the wavefunctionψ asψ = φ8 with

φ = 5i<j |xi − xj |λ λ = 1
2 + a. (19)

On using this ansatz in the Schrödinger equation withH as given by equation (18) we find
that8 must satisfy

−
N∑
i=1

∂28

∂x2
i

− 2λ
∑
i<j

1

(xi − xj )

(
∂

∂xi
− ∂

∂xj

)
8− e2√∑

i x
2
i

8 = E8. (20)

It is easily verified that

8 = exp

(
−

√
|E|

√∑
i

x2
i

)
(21)

is a solution to equation (20) with the energy

E = − e4

[(N − 1)(1 + λN)]2
. (22)

Clearly, for each ordering of particles,ψ is nodeless and hence it is the solution for the
ground state. If we rewriteψ in terms of the variables

yi =
√|E|√
λ
xi (23)

then one finds that

ψ2 = C exp

(
−β

√∑
i

y2
i

)
5i<j |yi − yj |β (24)

whereC is the normalization constant. Following the original Sutherland case [3], where
ψ2 was identical to the joint probability density function, it would indeed be remarkable if
ourψ2 as given by equation (24), for at leastβ = 1, 2, 4, can be mapped onto some known
solvable problem and, using these results, if one could obtain the one-particle density and
the pair correlation function for our case.

This work raises several issues which need to be looked into. I hope to address some
of these issues in the near future.
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