Exact solution of an \mathbf{N}-body problem in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L45
(http://iopscience.iop.org/0305-4470/29/3/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Exact solution of an N-body problem in one dimension

Avinash Khare \dagger
Institute of Physics, Sachivalaya Marg, Bhubaneswar-751 005, India

Received 23 October 1995

Abstract

A complete energy spectrum is obtained for the quantum mechanical problem of N one-dimensional equal mass particles interacting via potential $$
V\left(x_{1}, x_{2}, \ldots, x_{N}\right)=g \sum_{i<j}^{N} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}-\frac{\alpha}{\sqrt{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}}
$$

Furthermore, it is shown that the scattering configuration, characterized by initial momenta $p_{i}(i=1,2, \ldots, N)$, goes over into a final configuration characterized uniquely by the final momenta p_{i}^{\prime} with $p_{i}^{\prime}=p_{N+1-i}$.

In recent years, the Calogero-Sutherland (CS) type of N-body problems in one dimension has received considerable attention in the literature [1-4]. It is believed that the CS model with inverse square interaction provides an example of an ideal gas in one dimension with fractional statistics [5]. Moreover, these models are related to $(1+1)$-dimensional conformal field theory, random matrices, as well as a host of other things [6]. Inspired by these successes, it is of considerable interest to discover new exactly solvable N-body problems.

The purpose of this letter is to present one such example. In particular, we show that the N-body problem with equal mass in one dimension, characterized by ($\hbar=2 \mathrm{~m}=1$, $g>-1 / 2, \alpha>0)$

$$
\begin{equation*}
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{i<j}^{N} \frac{g}{\left(x_{i}-x_{j}\right)^{2}}-\frac{\alpha}{\sqrt{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}} \tag{1}
\end{equation*}
$$

is exactly solvable. The interesting point about this model is that, unlike most other exactly solvable models, it has both bound-state and scattering solutions. In particular, we show that the complete bound-state spectrum (in the centre-of-mass frame) is given by the formula

$$
\begin{equation*}
E_{n+k}=-\frac{\alpha^{2}}{4 N\left(n+k+b+\frac{1}{2}\right)^{2}} \quad n, k=0,1,2 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
b=+\frac{N(N-1)}{2} a+\frac{N(N+1)}{4}-\frac{3}{2} \quad a=\frac{1}{2} \sqrt{1+2 g} . \tag{3}
\end{equation*}
$$

For positive energy one has only scattering states. We show that a scattering configuration, characterized by initial momenta $p_{i}(i=1,2, \ldots, N)$, goes over into a final configuration characterized uniquely by the final momenta p_{i}^{\prime} with

$$
\begin{equation*}
p_{i}^{\prime}=p_{N+1-i} . \tag{4}
\end{equation*}
$$

\dagger E-mail address: khare@iopb.ernet.in

However, unlike the pure inverse square scattering case ($\alpha=0$), in our case the phase shift is energy-dependent. Thus, as in other integrable cases, the scattering problem reduces to a sequence of two-body processes.

Finally, following Sutherland [3], I also solve a slightly different variant of the Hamiltonian (1), with $-\alpha / \sqrt{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}$ being replaced by a potential $-\alpha / \sqrt{\sum_{i} x_{i}^{2}}$, and obtain exact expressions for the ground-state energy eigenvalues and eigenfunctions.

Consider the Hamiltonian as given by equation (1). We need to solve the eigenvalue equation

$$
\begin{equation*}
H \psi=E \psi \tag{5}
\end{equation*}
$$

where ψ is a translation invariant eigenfunction. Note that our Hamiltonian is very similar to the classic Calogero Hamiltonian (see equation (2.1) of his paper [2]) except that, whereas he has a pairwise quadratic potential, we have a ' N-body' potential $-\alpha / \sqrt{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}$. However, we shall see that many of the key steps are very similar in the two cases and hence we avoid giving most steps which are already contained there [2]. Without any loss of generality, as in [2] we also restrict our attention to the sector of the configuration space corresponding to a definite ordering of particles, say

$$
\begin{equation*}
x_{i} \geqslant x_{i+1} \quad i=1,2, \ldots, N-1 . \tag{6}
\end{equation*}
$$

From [2] it is clear that the normalizable solutions of equation (5) (with H being given by equation (1)) can be cast in the form

$$
\begin{equation*}
\psi(x)=Z^{a+1 / 2} \phi(r) P_{k}(x) \tag{7}
\end{equation*}
$$

where a is defined in equation (3), while Z and r are given by

$$
\begin{equation*}
Z=\Pi_{i<j}^{N}\left(x_{i}-x_{j}\right) \quad r^{2}=\frac{1}{N} \sum_{i<j}^{N}\left(x_{i}-x_{j}\right)^{2} \tag{8}
\end{equation*}
$$

and $P_{k}(x)$ is a homogeneous polynomial of degree k in the particle coordinates and satisfies the generalized Laplace equation, i.e.

$$
\begin{equation*}
\left[\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+2\left(a+\frac{1}{2}\right) \sum_{i<j}^{N} \frac{1}{\left(x_{i}-x_{j}\right)}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right)\right] P_{k}(x)=0 . \tag{9}
\end{equation*}
$$

As discussed in detail in [2], the polynomials $P_{k}(x)$ are completely symmetrical under the exchange of any two coordinates. On inserting the ansatz (7) into the Schrödinger equation (5) (with H given by equation (1)) and using equation (9) and following the procedure of [2], we find that $\phi(r)$ satisfies the equation

$$
\begin{equation*}
-\left[\phi^{\prime \prime}(r)+\{2 k+2 b+1\} \frac{1}{r} \phi^{\prime}(r)\right]-\left(\frac{\alpha}{\sqrt{N} r}+E\right) \phi(r)=0 \tag{10}
\end{equation*}
$$

where prime denotes differentiation with respect to the argument. The normalizable solutions of this equation are

$$
\begin{equation*}
\phi_{n, k}(r)=\exp (-\sqrt{|E| r}) L_{n}^{2 b+2 k}(2 \sqrt{|E| r}) \tag{11}
\end{equation*}
$$

while the corresponding energies are as given by equation (2). Here $L_{n}^{\alpha}(r)$ is a Laguerre polynomial. Notice that in expression (2) for the energy, n and k always come in the combination $n+k$ (unlike the Calogero case [2] where it comes in the combination $2 n+k$).

In the special case of $N=3$, we can check our expressions for E_{n} and $\psi_{n, k}$ with the exact expressions obtained by an entirely different method (see equations (40)-(43) of [7]).

On comparing the two we find (note that the coupling constant in [7] is $\sqrt{3} \alpha$ rather than α) that the two expressions agree provided $k=3 l$ and $P_{k}(x) \propto r^{3 l} C_{l}^{a+1 / 2}(\cos 3 \phi)$ where C_{i}^{a} is a Gegenbauer polynomial.

Let us now consider the positive energy spectrum of the Hamiltonian (1). It is, of course, a purely continuous spectrum. Following the treatment given above and as in [2, section 4], it is clear that the complete set of stationary eigenfunctions of the problem (in the centre-of-mass frame) is

$$
\begin{equation*}
\psi_{p k}=Z^{a+1 / 2} \phi_{p}(r) P_{k}(x) \quad k=0,1,2, \ldots \quad p \geqslant 0 \tag{12}
\end{equation*}
$$

where p is connected to the energy eigenvalue by $E=p^{2} \geqslant 0$ (note that we have chosen $\hbar=2 m=1$) while $\phi_{p}(r)$ satisfies equation (10). It is easily shown that for $E \geqslant 0$, the solution of equation (10) is given by

$$
\begin{equation*}
\phi_{p}(r)=\mathrm{e}^{\mathrm{i} p r} F\left(k+b+\frac{1}{2}-\frac{\mathrm{i} \alpha}{2 p \sqrt{N}}, 2 k+2 b+1 ;-2 \mathrm{i} p r\right) . \tag{13}
\end{equation*}
$$

One can now run through the arguments of [2, section 4] and show that if the stationary eigenfunction describing, in the centre-of-mass frame, the scattering situation is characterized by the form

$$
\begin{equation*}
\psi_{i n} \sim C \exp \left(\mathrm{i} \sum_{i=1}^{N} p_{i} x_{i}\right) \tag{14}
\end{equation*}
$$

with (note $x_{i} \geqslant x_{i+1}, i=1,2, \ldots, N-1$)

$$
\begin{equation*}
p_{i} \leqslant p_{i+1} \quad p^{2}=\sum_{i=1}^{N} p_{i}^{2} \quad \sum_{i=1}^{N} p_{i}=0 \tag{15}
\end{equation*}
$$

then $\psi_{\text {out }}$ is given by

$$
\begin{equation*}
\psi_{\text {out }} \sim C \mathrm{e}^{2 \mathrm{i} \eta_{p}-i b \pi} \exp \left(\mathrm{i} \sum_{i=1}^{N} p_{N+1-i} x_{i}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{e}^{2 i_{p}}=\frac{\Gamma\left(k+b+\frac{1}{2}-\mathrm{i} \alpha / 2 p \sqrt{N}\right)}{\Gamma\left(k+b+\frac{1}{2}+\mathrm{i} \alpha / 2 p \sqrt{N}\right)} . \tag{17}
\end{equation*}
$$

Thus we have the remarkable result that, even in the presence of the potential $-\alpha / \sqrt{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}$, the N-particle scattering problem reduces to a sequence of two-body processes as characterized by equation (4) but now one has an energy-dependent phase shift. Note that all the results about scattering are also valid in the case when α is negative but now the spectrum is purely continuous and there are no bound states.

Finally, let us discuss the 'Sutherland variant' [3] of the Hamiltonian (1). Consider

$$
\begin{equation*}
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+\sum_{i<j} \frac{g}{\left(x_{i}-x_{j}\right)^{2}}-\frac{\alpha}{\sqrt{\sum_{i} x_{i}^{2}}} \tag{18}
\end{equation*}
$$

i.e. the N-body potential is now slightly different. Note that for the Calogero case, Sutherland [3] was able to obtain an exact expression for the ground-state energy and eigenfunction ψ, and find a remarkable connection of ψ^{2} with the joint probability density function for the eigenvalues of matrices from a Gaussian ensemble in the case when $\beta=2 \lambda=1,2$ or 4 . Using these connections he was able to compute [3] the one-particle density and the pair correlation function.

Following Sutherland, let us consider the Schrödinger equation $H \psi=E \psi$ with H as given by equation (18). Furthermore, let us write the wavefunction ψ as $\psi=\phi \Phi$ with

$$
\begin{equation*}
\phi=\Pi_{i<j}\left|x_{i}-x_{j}\right|^{\lambda} \quad \lambda=\frac{1}{2}+a \tag{19}
\end{equation*}
$$

On using this ansatz in the Schrödinger equation with H as given by equation (18) we find that Φ must satisfy

$$
\begin{equation*}
-\sum_{i=1}^{N} \frac{\partial^{2} \Phi}{\partial x_{i}^{2}}-2 \lambda \sum_{i<j} \frac{1}{\left(x_{i}-x_{j}\right)}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) \Phi-\frac{e^{2}}{\sqrt{\sum_{i} x_{i}^{2}}} \Phi=E \Phi \tag{20}
\end{equation*}
$$

It is easily verified that

$$
\begin{equation*}
\Phi=\exp \left(-\sqrt{|E|} \sqrt{\sum_{i} x_{i}^{2}}\right) \tag{21}
\end{equation*}
$$

is a solution to equation (20) with the energy

$$
\begin{equation*}
E=-\frac{e^{4}}{[(N-1)(1+\lambda N)]^{2}} . \tag{22}
\end{equation*}
$$

Clearly, for each ordering of particles, ψ is nodeless and hence it is the solution for the ground state. If we rewrite ψ in terms of the variables

$$
\begin{equation*}
y_{i}=\frac{\sqrt{|E|}}{\sqrt{\lambda}} x_{i} \tag{23}
\end{equation*}
$$

then one finds that

$$
\begin{equation*}
\psi^{2}=C \exp \left(-\beta \sqrt{\sum_{i} y_{i}^{2}}\right) \Pi_{i<j}\left|y_{i}-y_{j}\right|^{\beta} \tag{24}
\end{equation*}
$$

where C is the normalization constant. Following the original Sutherland case [3], where ψ^{2} was identical to the joint probability density function, it would indeed be remarkable if our ψ^{2} as given by equation (24), for at least $\beta=1,2,4$, can be mapped onto some known solvable problem and, using these results, if one could obtain the one-particle density and the pair correlation function for our case.

This work raises several issues which need to be looked into. I hope to address some of these issues in the near future.

References

[1] Calogero F 1969 J. Math. Phys. 10 2191, 2197
[2] Calogero F 1971 J. Math. Phys. 12419
[3] Sutherland B 1971 J. Math. Phys. 12246
[4] For excellent review of this field see Olshanetsky M A and Perelomov A M 1981 Phys. Rep. 71 313; 1983 Phys. Rep. 94313
[5] Haldane F D M 1991 Phys. Rev. Lett. 67937
Wu Y-S 1994 Phys. Rev. Lett. 73922
Murthy M V N and Shankar R 1994 Phys. Rev. Lett. 733331
[6] See for example the flow chart with various connections in Simons B D, Lee P A and Altshuler B L 1994 Phys. Rev. Lett. 7264
[7] Khare A and Bhaduri R K 1994 J. Phys. A: Math. Gen. 272213
[8] See for example, Mehta M L 1990 Random Matrices revised edn (New York: Academic)

